Foods / Tuesday, 09-Sep-2025

Still-unapproved CRISPR gene-drive could suppress fruit-killing vinegar flies

Still-unapproved CRISPR gene-drive could suppress fruit-killing vinegar flies

XLinkedInFacebookRedditBlueskyThreads
Credit: Camila Ortega via ERGo! and CC-BY-SA-4.0
Credit: Camila Ortega via ERGo! and CC-BY-SA-4.0
Researchers have developed a “homing gene drive system” based on CRISPR/Cas9 that could be used to suppress populations of Drosophila suzukii vinegar flies—so-called “spotted-wing Drosophila” that devastate soft-skinned fruit in North America, Europe and parts of South America—according to new research from North Carolina State University.

The NC State researchers developed dual CRISPR gene drive systems that targeted a specific D. suzukii gene called doublesex, which is important for sexual development in the flies. CRISPR stands for “clustered regularly interspaced short palindromic repeats” and Cas9 is an enzyme that performs like molecular scissors to cut DNA. CRISPR systems are derived from bacterial immune systems that recognize and destroy viruses and other invaders, and are being developed as solutions to problems in human, plant and animal health, among other uses.

Targeting the doublesex gene resulted in female sterility in numerous experiments as females were unable to lay eggs, says Max Scott, an NC State entomologist who is the corresponding author of a paper in Proceedings of the National Academy of Sciences that describes the research.

“This is the first so-called homing gene drive in an agricultural pest that potentially could be used for suppression,” Scott said.

Gene drives can preferentially select, change or delete particular traits or characteristics and “drive” those edits through future generations, resulting in a sometimes far greater than 50% chance of passing those changes to progeny.

“Gene drive means biased inheritance,” Scott said.

Follow the latest news and policy debates on sustainable agriculture, biomedicine, and other ‘disruptive’ innovations. Subscribe to our newsletter.

Researchers used a fluorescent red protein to mark the presence of the CRISPR/Cas9 genetic change to the fly’s genetic blueprint, or genome. The gene drive systems transmitted that fluorescent protein to 94-99% of progeny, the paper reports.

The researchers also used mathematical modeling to predict how efficiently the gene drive system would suppress a given D. suzukii population in laboratory cages. The modeling showed that releasing just one modified fly for every four “wild” flies—those not genetically modified—could tank fly populations within approximately eight to 10 generations.

“Because doublesex is such a conserved gene required for female development in so many fly species, I think the homing gene drive strategy could be used for other pests,” Scott said.

Scott and collaborators previously showed success in suppressing D. suzukii populations using a strain that produces only males and also used a similar method to reduce lab populations of the New World screwworm fly.

Next steps include contained trial experiments in cages in an NC State greenhouse.

“We’re doing small population cage suppression experiments. We’re hoping to learn if repeated fly releases with a 1:4 ratio will suppress fly populations in a cage like the modeling suggests,” Scott said.

Read the original post here
combined disclaimer outlined@ x
donation plea outlined@ x
XLinkedInFacebookRedditBlueskyThreads
podcastsGLP Podcasts & Podcast VideosMore...
Video: Nuclear energy will destroy us? Global warming is an existential threat? Chemicals are massacring bees? Donate to the Green Industrial Complex!

Video: Nuclear energy will destroy us? Global warming is an existential threat? Chemicals are massacring bees? Donate to the Green Industrial Complex!

v facts and fallacies cameron and liza default featured image outlined

GLP podcast: Science journalism is a mess. Here’s how to fix it

Mosquito massacre: Can we safely tackle malaria with a CRISPR gene drive?

Mosquito massacre: Can we safely tackle malaria with a CRISPR gene drive?

dead bee desolate city

Are we facing an ‘Insect Apocalypse’ caused by ‘intensive, industrial’ farming and agricultural chemicals? The media say yes; Science says ‘no’

Infographic: Global regulatory and health research agencies on whether glyphosate causes cancer

Infographic: Global regulatory and health research agencies on whether glyphosate causes cancer

Does glyphosate—the world's most heavily-used herbicide—pose serious harm to humans? Is it carcinogenic? Those issues are of both legal and ...
science hand testtube x

Why is there controversy over GMO foods but not GMO drugs?

Genetic Literacy Project
international law x

How are GMOs labeled around the world?

Genetic Literacy Project
two types of breeding x

How does genetic engineering differ from conventional breeding?

Genetic Literacy Project
Screen Shot at AM

Alex Jones: Right-wing conspiracy theorist stokes fear of GMOs, pesticides to sell ‘health supplements’

T H LO

IARC (International Agency for Research on Cancer): Glyphosate cancer determination challenged by world consensus

Most Popular

  • Viewpoint — Fact checking MAHA mythmakers: How wellness influencers and RFK, Jr. undermine American science and health

  • Viewpoint: Video — Big Solar is gobbling up productive agricultural land and hurting farmers yet providing little energy or sustainabilty gains

  • Fighting deforestation with CO2: Biotechnology breakthrough creates sustainable palm oil alternative for cosmetics

  • Trust issues: What happens when therapists use ChatGPT?

  • California, Washington, Oregon forge immunization alliance to safeguard vaccine access against federal undermining

  • 30-year-old tomato line shows genetic resistance to devastating virus

  • The free-range chicken dilemma: Better for birds, but with substantial costs

  • ‘You have to treat the brain first’: Rethinking chronic pain with Sanjay Gupta

Follow Us

Newsletter

Be the first to know about new products and promotions.

Subscribe with your email

Tranding

Tags

trendglee

Fresh, fast, and fun — all the entertainment you need in one place.

© Trendglee. All Rights Reserved. Designed by trendglee